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Rastall's and related theories are conservative gravitational 
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relativity 
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and Physics Department, The University of Alabama/Huntsville, Huntsville, A L  35899, 
USA 

Received 13  October 1982 

Abstract. We show the following: (1) the proper framework for testing Rastall's theory 
and its generalisations is in the case of non-negligible (i.e. discernible) gravitational effects 
such as gravity gradients; (2) these theories have conserved integral four-momentum and 
angular momentum; and (3) the Nordtvedt effect then provides limits on the parameters 
which arise as the result of the non-zero divergence of the energy-momentum tensor. 

Let us reconsider those theories for which the energy-momentum tensor does not 
have zero divergence. The generic form of this type of theory was described by Rasta11 
(1972) in that he showed that, to be compatible with the classical solar system 
experiments, the non-zero divergence must be proportional to the gradient of a scalar. 
The only constraint on the scalar is that it should go to a constant in asymptotically 
flat space. As an example, he proposed that the divergence of the energy-momentum 
tensor be 

TLiV = A'R ,,, (1) 
where R is the scalar curvature and A '  is a constant parameter. The consistent field 
equations take the form 

( 2 )  
where R,, is the Ricci tensor, g,, is the metric tensor, K is proportional to the 
gravitational constant, and A = A ' K .  A complete post-Newtonian approximation of 
Rastall's theory is given by Smalley (1978a). Generalisations of Rastall's theories and 
other theories such as the Brans-Dicke theory (Brans and Dicke 1961) have been 
given by Smalley (1974a, b, 1975, 1976, 1977), Smalley and Prestage (1976) and 
Malin (1975). 

Considerable discussion exists in the literature as to what the word 'conservative' 
means for the post-Newtonian approximation of metric gravitational theories, We 
generally subscribe to the definition of a metric gravitational theory given by Thorne 
er a1 (1973) of the form: there exists a space-time metric gap ; world lines are geodesics; 
and the Einstein equivalence principle is satisfied. The concept of a conservative 
gravitational theory is then equivalent to the question: is there a symmetric quantity 
Oap, called the stress-energy complex, which reduces to Tap in flat space-time and 

R,, - (A  + i)g,,B = -KT,", 
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whose ordinary divergence @“’,, = O? If so, one can define in the usual manner the 
energy-momentum, four-vector Pa and the angular momentum tensor J“’ which are 
the desired conserved quantities. The answer to this question for Rastall’s theory and 
several of its generalisations is positive (Smalley 1976, 1977, 1978a). However, these 
results vitiate the significance of the so-called non-conservative parameters 11, g2 ,  l 3 ,  

g4 (Nordtvedt and Will 1972, Will and Nordtvedt 1972), some of which are non-zero 
in the above theories. 

Lindblom and Hiscock (1982) have correctly shown that if we assume that the 
perfect fluid energy-momentum tensor (with energy density E, pressure p, and four- 
velocity U”)  

t F Y  = ( E  +p)U”U” + p g w u ,  (3) 

is proportional to the Einstein tensor, G””, then it is possible to rescale the field 
equation (2), so that it is equivalent to Einstein’s gravitational theory with a perfect 
fluid, but now the measured energy density and pressure are given by 

E ’ =  ( 1 + 4 A ) - ’ [ ( 1 + 3 A ) ~  +3Ap] ,  (4) 

p ’ = ( 1 + 4 h ) - ’ [ ( l + A ) p + A ~ ] .  ( 5 )  

(Note that in our convention there is a negative sign on the right-hand side of (2) 
which means that we have a sign difference for A in (4) and ( 5 )  compared with 
Lindblom and Hiscock. Also they do not distinguish between A and A ‘  in (1) and 
(2).) This is, of course, a possible interpretation but does not lead to anything new. 
This parallels the analysis of Harrison (1972) who has shown that it is always possible, 
using conformal transformations, to relate physically inequivalent theori 2s. Alterna- 
tively, Lindblom and Hiscock considered the identification of the TCLy of (2) with the 
t,, given by (3) and sought physical limits on the A parameter from the behaviour in 
the laboratory of a near perfect fluid such as helium gas at low temperature. Experi- 
mental limits from solar system experiments have shown that necessarily A s O(v2)  
(Smalley 1978a). Upon using (1) and (21, the Bianchi identities yield the following 
equations of motion for the physical variables E and p: 

U’”V,[(l + ~ A ) E  + 3 A p ] +  (1 + ~ A ) ( E  +p)V,U” = 0, (6) 

( 1 + 4 A ) ( ~  +p)U”V,U”+(g””+U~U”)V, [ ( l+A)p  + A s ] = O .  (7) 

Lindblom and Hiscock attempt to analyse these equations in what they refer to as 
theNewtonianlimit (U”  = (1, ui), u i  << l , p  C< E ,  andnegligibleself-gravitationaleffects). 
Eventually they find a wave-like equation for small density fluctuations S E ,  

(8) aoao(sE ) - v f alai (SE ) = 0, 

v r  =ap/aF +he2 ,  

with propagation velocity 

(9) 

By comparison with gaseous helium near 4 K, they conclude that A 6 0.01 vf /c ’  = 
obtained by Smalley (1978a) from solar system 

constraints or velocities. They also claim that their results would apply to more general 
theories too. Thus, upon face value, the Rastall-type theories appear to be non-viable 
alternatives to general relativity. 

2 

providing A << 1. 

compared with A = 
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In what follows, we show explicitly the analysis which leads to (8)-(9) must either 
neglect all gravitational effects or it must retain them to appropriate orders which, 
in either case, does not lead to their results. Furthermore, an example of a more 
general theory yields the classical sound velocity. Finally we show by example that 
the Rasta11 theories will provide theoretical limits in the interpretation of solar system 
experiments, for example, lunar laser ranging. 

In order to carry out a consistent calculation for the deviations of E and p from 
their equilibrium values beginning with the fluid equations (6)-(7), we must establish 
an approximation scheme in powers of v for the various quantities. In this case we 
have (for c = 1) 

A - O(v2) ,  

E = & ( 2 1 + & ‘ 4 ) +  . . . )  
p =p‘4’ +p+.  . , = p‘4’ + (ap/a&)E4+. . . , 

where the superscript in parentheses refers to order of v and ap/& -0(v2). The 
equilibrium values, E ” )  and P ‘ ~ ’ ,  are assumed uniform. This has the effect of removing 
some of the external gravitational field effects that would enter through the g”” term 
in (7). In (12), the pressure has been expanded as a function of E ,  and the partial 
derivative is understood to be taken at constant entropy. To the correct order, we 
also have dkp(6 )  = ( 8 p / a ~ ) d ~ ~ ‘ ~ ’ .  Finally, we identify E ‘ ~ ’  with the small density fluctu- 
ation SE of (8).  

After taking the divergence of (7) and subtracting the covariant derivative of (6) 
along the four-velocity U, we obtain the equation 

28U”V,[(l + A ) p  +AE]V,U” +(1  + ~ A ) ( E  +p)(V,U”)V,U” +(1 + ~ A ) ( E  + p ) U ” U ” R , ,  

+ g””v,v, [ (1 + A ) p  + A E  ] - (v,U ”) U” v, [3Ap + ( 1 + 3A ) E ]  

+ U”U”v,v,[(1 -2A)p-(1+2A)~]=O.  (13) 

It is crucial to note that we have used the important commutator identity for covariant 
derivatives 

2UPV~,V,~U”  = R , , U ” U “ ,  (14) 

in the calculation of (13). For the specific example of low-temperature helium gas 
used by Lindblom and Hiscock, it is reasonable to neglect streamline velocities which 
are of the order of 1 m s-’  in comparison with sound velocities which are near 
100 m s-’. Separating out the O(u6) part of (13) (after using lower-order identities 
from (6), (7) and (13)), we finally obtain 

a 0 8 0 ~ ‘ ~ )  - ( a p / 8 ~  + A)V2& ‘4i - ( E  ‘‘) + P ‘ ~ ’  + 4 h ~ ‘ ~ ’ ) R ~ ~  - E‘2 iRb~  = 0, (15) 

which unlike (8) is a wave equation with sources. It is tempting to argue (as 
Lindblom and Hiscock do) that the time components of the Ricci tensor can be 
neglected for systems with negligible self gravity. If so, then we have negated the 
premise of the theory upon which are based the gravitational field equations (2) along 
with the divergence condition on the energy-momentum tensor. That is, it is the fiela 
equations that allow you to form a divergentless T’”, constructed from E ‘  and pf  given 
by (4) and (51, which also lead to the fluid equations (6 )  and (7). Indeed, the field 



2182 L L Smalley 

equations (to the proper order) yield 

(16) 

(17) 

( 2 )  12) Roo=-4H& , 

RE) = -4fl(Ei4)+ 3p‘4’ - &“)gb$), 

so that (15 j finally becomes 

( a p / a &  + A ) V * ~ ‘ ~ ’ + 4 ~ r ~ ‘ ~ ’ ( 2 ~ ‘ ~ ) + 4 p ( ~ ~ + 4 A ~ ‘ ~ ’ - ~ ~ * ) g 1 0 2 0 ) )  = 0. (18) 

It is interesting to note that even though one assumes there is negligible self gravity, 
it is not possible to eliminate the curvature terms (because of the assumed structure 
of the field equation); and further, the external field of the Earth also enters through 
gb$ = -2U(x)  in the source term. Alternatively, to set the Ricci terms in (15)  to zero 
requires for consistency that the scalar curvature term of ( 1 )  in the matter equation 
of motion also vanish. But in  this case, A does not occur at all in the matter equations. 
This is the consistent flat space (non-gravitational) limit of Rastall’s theory (1972) in 
which he requires that the divergence of the energy-momentum tensor be proportional 
to a vector which vanishes in asymptotic flat-space. 

Consider now a generalisation of Rastall’s theory, in particular, the case of a 
modified Brans-Dicke theory (Smalley 1975, 1976, 1977) in which 

Tw’,v = ( f l /8~)4 ,~4’”4 ,~ ,  (19) 

024 = E-’(qb)T, (20) 

E ( ~ ) = - c T ~ ~ / ~ H  +c, (21) 

R”” -4g’”R = -03 714 HT’” + T2” 1, 

where U is a parameter of O(1). The scalar field 4 is governed by the field equation 

where E ( 4 )  is the function 

obtained from consistency with the Bianchi identities. The field equations are 

(22) 

where 

T2“ =A(d)4 ,”4 ,u  +B(4)g””4’P4,P +C(4)4.”.” + D ( 4 ) g ” ” 0 2 4 ,  (23) 
with 

w + 4  
A(d j = - 2 B ( 4 )  = - 

C ( 4 )  = - D ( d )  = 1 /87 ,  (25) 

where w is the usual Brans-Dicke parameter. Gauge conditions have been used to 
set the constant C through the relation 

8HC-2Uy2r26 .1  +3, (26) 

and the renormalised gravitational constant becomes (because of the Newtonian limit) 

(27) G = N ( 2 w  +4)/(2w + 3 ) ] 5  1. 

Note that the identification 

G = U  + u [ ( ~ u  +4j / (2w +3) l2 -ad2  (28) 
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formally reduces the structure of the field equations to the form of the usual Brans- 
Dicke theory, but now 4 =3(4) .  The theory looks formally equivalent to the 
Bergmann-Wagoner theory (Bergmann 1968, Wagoner 1970) and the Nordtvedt 
(1970) scalar-tensor theory, except that the cosmological constant A = 0 and the 
dD/d4 term is missing in the 0’4 equation as a result of T””,, # 0. The important 
point here is that this did not involve a redefinition of T,, (as in Rastall’s theory). In 
fact, the analysis for the sound velocity equation yields 

Since 4 , j ~ a j U  (the gradient of the gravitational field), it is not difficult to see that 
for both negligible internal and external gravitational effects the usual classical result 
is obtained without any ambiguities as in the pure Rastall case. 

Finally, we show for the example of a Rastall-type theory given by (19)-(27) that 
the unambiguous experiment is in the astrophysical setting. The parametrised post- 
Newtonian ( p m )  parameters for this theory (Smalley 1975) are 

W + l  7w + 10 
Y = w , z ’  P = 1,  5%‘ = 0, AI=- A2 = 1, 7w + 14’ 

(30) 
2w + 3  2 w + 1  4 u  W + l  

P4=-  
w + 2 ’  P I = = ,  P2=m + ( 2 ~ + 3 ) ~ ’  63 = 1,  

Only the p2 parameter is altered. This is also equivalent to the non-zero 6 parameter 

(31) 

yet this theory has integral conservation laws for four-momentum and angular momen- 
tum (Smalley 1976). Recent experimental limits on the quadrupole moment of the 
Sun (see e.g. Gough 1982) have severly restricted the Brans-Dicke theory by constrain- 
ing the parameter w 3 100. There have been attempts to use also the Nordtvedt effect 
(Nordtvedt 1968a, b, 1973) to impose experimental limits on w .  The Nordtvedt effect 
is represented by the parameter 

5 2  = 8a/(2w + 3)3; 

77 = 4P + 3y -7Al- f(2P + 2 p 2 - 3 ~  + A 2 -  2) 3 5 w  

(32) 
where in the second line we have noted the Will-Nordtvedt PPN parameters. Experi- 
mentally v = O.OO* 0.03 (Williams et a1 1976, Shapiro et a1 1976). 

2 2 1 1 3  
312‘2 - 351- 5 5 2  - Tlw,  = 4P - y - 3 - U‘ 1 

However, in this modified Brans-Dicke theory, we obtain instead 

77 =(w+2) -1 - fa / (2w+3)3 .  (33) 
We find, therefore, that (31) does not imply just a constraint on w ,  but an experimental 
limit on the parameter U.  On face value, if we take = 0, 

u = i ( 2 w  +3)3/(w +2) .  (34) 
But from (30) we discover that this is precisely the value of U necessary to force 
pz = 1 ;  i.e. P2 takes its general relativity value. 

Other examples are known (Smalley 1977), for example, the Rastall-type theory 
in which 

TU‘‘;” =S(UR):,. (35) 
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One obtains the usual PPN parameters of general relativity except that here 

5 2  = -2s. (36) 
As a result 

77 = 4 p  - y - 3 i f s ,  (37) 

so that the Nordtvedt parameter 7 given above is not just a limit on the Robertson 
parameters, p and y ,  but must be considered a limit on the three parameters p, y 
and S .  

In summary, we mention that it is generally held that T””,, = 0 satisfies special 
relativity locally independent of the PPN metric because it is always possible to choose 
a coordinate system at a point where the connection vanishes and the metric is locally 
Lorentzian. This is of course true but only up to curvature or gravity-gradient terms. 
This is the gist of our first considerations. There is another way to put this. The 
Einstein equivalence principle demands that in local Lorentz frames, the laws of 
special relativity follow. Indeed, we must interpret this as an exact statement only at 
a point and as only an approximate statement over an extended (albeit small) region 
about the point when gravity is present. (An exception is the special case of uniform 
gravitational fields which are global so that local Lorentz frames can be extended to 
the global Minkowski flat space-time.) Abruptly we must now change our viewpoint 
to consider the exact nature of the gravitational fields over the volume of the experi- 
ment itself, i.e. we must test for flatness (Misner et a1 1973). It is at this point that 
these non-zero divergence theories depart from the usual formulations of relativity. 
That is, we do not require that T”’,“ = 0 in the extended local Lorentz frame. We 
look instead for conserved four-momentum angular momentum in the global post- 
Newtonian frame, or equivalently for a quantity O“’, called the stress-energy complex, 
which reduces to T”’ in flat space-time and whose ordinary divergence O“’,, = 0 
(Smalley 1976, 1977, 1978a). Even if T”“:y = 0, it is riot possible to obtain integral 
conservation laws directly because of the presence of the Christoffel symbols in the 
covariant derivative (Landau and Lifshitz 1962). In fact, we now know that the zero 
divergence of the energy-momentum tensor is not even a necessary condition. In all 
the cases discussed above, conserved quantities were found with the proper limit 
to the local Lorentz frame. At some point in that local frame, the complex reduces 
to T”” and T””,, = 0, but over the extended local frame, the gravitational fields exert 
their influence (curvature, gravity gradients) unless they can be neglected for a 
particular experiment. The Einstein equivalence principle is certainly compatible with 
this, but now one cannot make the converse requirement that the Einstein equivalence 
principle implies that T””,, = 0 implies that T”“,, = 0. This is certainly known not to 
be the case for theories with torsion (Smalley 1978b). Thus, mathematically these 
theories are consistent. But how well do they compare with the motion of matter? 
When gravity is ignorable, we obtain the usual results as shown above. It is also 
easy to show that for the cases where gravity is important, then for all three cases, 
the continuity equation holds. The usual Euler equation is obtained for the second 
example (Smalley 19751, but there is a density-gradient term proportional to A for 
the first example (Smalley 1978a) and proportional to S for the third example (Smalley 
1977). It is difficult to see how these theories could be tested in a local experiment 
in which the gravitational field is negligible. The effect in solar experiments may be 
debatable, but they could lead to important consequences in the treatment of relativistic 
stars. 
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Finally, we mention that the equation of an action principle for these theories is 
under investigation. Generally speaking, we expect that the laws of physics should 
be derivable from an action principle. Our understanding of these theories will be 
greatly enhanced if an action principle can be found. 
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